

ЦЕНТР ПРОГРЕССИВНЫХ МАТЕРИАЛОВ И АДДИТИВНЫХ ТЕХНОЛОГИЙ

О ЦЕНТРЕ

История создания Центра прогрессивных материалов и аддитивных технологий берет начало с 60-70-х годов XX века, когда в Кабардино-Балкарском государственном университете одним из ведущих ученых в нашей стране в области науки о полимерах профессором А.К. Микитаевым (1942-2017 гг.) созданы отраслевая лаборатория «Термостойкие полимеры в электронной технике», НИИ высокомолекулярных соединений, ОКТБ «Марс».

На базе этих структур в 2008 году был сформирован научно-образовательный центр «Полимеры и композиты» Кабардино-Балкарского государственного университета.

В период функционирования НОЦ «Полимеры и композиты» были получены ряд оригинальных научных результатов в области синтеза поликонденсационных полимеров различного класса, разработки рецептур и технологий изготовления композитных и нанокомпозитных материалов на основе поливинилхлорида, полиэтилентерефталата и

органомодифицированных глин, поддержанных в рамках Федеральной целевой программы «Исследования и разработки по приоритетным направлениям развития научно-технологического комплекса России», Аналитической ведомственной целевой программы «Развитие научного потенциала высшей школы»

Коллективом НОЦ успешно выполнены 2 проекта по созданию высокотехнологичного производства новой полимерной продукции в рамках Постановления №218 Правительства Российской Федерации.

В 2014 году на базе НОЦ совместно с Фондом перспективных исследований создана Лаборатория прогрессивных полимеров, которую возглавила ученица А.К. Микитаева, доктор химических наук, профессор С.Ю. Хаширова.

В 2017 году Лаборатория прогрессивных полимеров преобразована в научно-исследовательский Центр прогрессивных материалов и аддитивных технологий.

В рамках выполненных в последние годы совместных проектов с Фондом перспективных исследований и ведущим материаловедческим предприятием Госкорпорации «Роскосмос» АО «Композит» коллективом Центра сформирован уникальный научно-технический задел в области создания новых прогрессивных суперконструкционных полимеров и технологий их 3D печати. Разработаны высокоэффективные технологии

производства суперконструкционных полимеров и композитов на их основе, которые не имеют аналогов в России и по большинству характеристик превосходят зарубежные подобные материалы. Разработаны технологии 3D печати полученных суперконструкционных полимеров, которые позволяют получать 3D изделия для ответственных применений, не уступающие по свойствам литьевым

ПАРТНЕРЫ

В настоящее время ведется сотрудничество в области разработки новых высокоэффективных полимерных материалов и технологий их производства госкорпорациями «Роскосмос» и «Росатом», ПАО «Иркут», ФГУП «ВИАМ», ПАО «Сибур Холдинг» и др.

НАГРАДЫ ЦЕНТРА:

2019

47-ая Международная выставка изобретений в Женеве «Inventions Geneva» серебряная медаль

2019

Международная выставка интеллектуальной собственности, изобретений, инноваций и технологий в Бангкоке (IPITEx 2019)

серебряная медаль

специальная награда

2018

Международная ярмарка изобретений в Сеуле (SIIF 2018) **бронзовая медаль,**

2017

69-я Международная выставка «Идеи-Инновации-Новые разработки» "IENA" **2 золотые медали**

2006

Международная выставка в Париже, конкурс "LEPINE" золотая медаль, серебряная медаль, бронзовая медаль

2006

Международный салон в Женеве **2 серебряные медали, бронзовая медаль**

2005

Международная выставка в Брюсселе "Eureka" **2 золотые медали**

2005

57-ая Всемирная выставка исследований и изобретений в Брюсселе золотая медаль

ЦПМАТ В ЦИФРАХ:

14 выполненных проектов

Начиная с 2008 года успешно выполнены ряд научно-исследовательских проектов в рамках Федеральной целевой программы, государственных контрактов, грантов и договоров на выполнение НИР.

458 научных статей

Результаты проводимых исследований публикуются в рецензируемых российских и зарубежных научных журналах.

158 патентов

Ежегодно по результатам выполненных исследований сотрудниками Центра подается около 10 заявок на патент.

25 научных сотрудников

Коллектив состоит из высококвалифицированных специалистов в области химии и физики высокомолекулярных соединений и включает в себя 3 докторов и 16 кандидатов наук.

НАПРАВЛЕНИЯ ДЕЯТЕЛЬНОСТИ:

- Получение полиэфиркетонов, полиэфирсульфонов, полиэфиримидов, полифенилсульфида а также композитов на их основе.
- Разработка функциональных материалов электропроводных, радионепрозрачных, антифрикционных, огнестойких и др.
- Изготовление филаментов для 3D печати методом FDM.
- Изготовление порошковых материалов для печати методами SLS.
- Получение высокотермостойких аппретов для совмещения суперкон-

- струкционных полимеров с наполнителями различной природы.
- Получение высоконаполненных композитов.
- Аддитивное изготовление крепежных изделий, деталей и узлов из суперконструкционных полимеров для изделий ракетно-космической отрасли, оборонно-промышленных предприятий, медицинской сферы.
- Исследование физико-химических и механических свойств полимерных материалов.

ПРОДУКЦИЯ

На созданном на базе Кабардино-Балкарского государственного университета малом инновационном предприятии ООО «Поликом» осуществляется малотоннажное производство суперконструкционных материалов: полиэфиркетонов, полиэфирсульфонов, угле-, стекло- и минералонаполненных композиционных материалов на основе полиэфиркетонов, полиэфирсульфонов, полиэфиримида и полифениленсульфида.

В зависимости от потребностей заказчика материалы производятся с различными значениями показателя текучести расплава, отвечающими требованиям переработки термопластов (литье под давлением, экструзия, прессование, 3D печать, а также марки полимеров с низкой вязкостью расплава для получения высоконаполненных композиционных материалов). Материал может поставляться в виде порошка или гранул.

Сферы применения:

- Авиакосмическая промышленность.
- Автомобилестроение.
- Электроника и электротехника.
- Медицина.
- Энергетика.
- Военная промышленность.

ПОЛИЭФИРЭФИРКЕТОН (ПЭЭК, PEEK) (зарубежный аналог PEEK Victrex)

Основные особенности:

- Высокая термостойкость и теплостойкость.
- Максимальная рабочая температура до 250 °С (долговременный нагрев) и до 310 °С (кратковременный нагрев).
- Хорошая стабильность размеров.
- Превосходные механические свойства и прочность.
- Отличная химическая стойкость.
- Низкое влагопоглощение.
- Высокая радиационная стойкость.

Характеристики различных марок РЕЕК

Наименование показателя		PEEK 150	PEEK 50	PEEK 10	PEEK1
ПТР, г/10 мин. при 380 °C		120-170	50-70	8-12	0,5-1
Температура стеклован	ия, °С	136	146	148	149
Температура плавления	a, °C	348	342	340	337
Ударная вязкость	без надреза	11,0	32,4	н/р	н/р
по Изоду, кДж/м²	с надрезом	-	-	8,6	16,8
Модуль упругости при в	Модуль упругости при изгибе, ГПа		3,9	3,8	3,6
Модуль упругости при р	растяжении, ГПа	3,5	3,0	3,0	2,9
Прочность при разрыве, МПа		63	90	119	118
Предел текучести при растяжении, МПа		-	-	105	105
Относительное удлине	ние, %	2,5	5	73	30

ПОЛИАРИЛЕНЭФИРКЕТОН (ПАЭК, РАЕК)

Основные особенности:

- Высокая термостойкость и теплостойкость
- Аморфный материал
- Хорошая технологичность

• Сочетание ударопрочности с высокими упруго-прочностными свойствами

Характеристики РАЕК

Наименование пока	PAEK 100	PAEK 10	
ПТР, г/10 мин. при 350°C	96	14	
Температура стеклования, °С	147	152	
Ударная вязкость по Изоду, кДж/м²	н/р	н/р	
ударная вязкость по изоду, кдж/м	7,0	9,7	
Модуль упругости при изгибе, ГПа	2,8	2,7	
Модуль упругости при растяжении, ГПа	2,25	2,15	
Прочность при разрыве, МПа	63	- 70	
Предел текучести при растяжении, МПа	79	73	
Относительное удлинение, %		75	80

ПОЛИСУЛЬФОНЫ

- Полисульфон (ПСФ, PSU) зарубежные аналоги Ultrason S (BASF), Udel (Solvay)
- Полиэфирсульфон (ПЭС, PES) зарубежные аналоги Ultrason E (BASF), Radel A (Solvay)
- Полифениленсульфон (ПФСн, PPSU) зарубежные аналоги Ultrason P (BASF), Radel R (Solvay)
- Кардовый полифениленсульфон (ПФСнФФ, PPSU-C)

Основные особенности:

- Низкий коэффициент линейного теплового расширения.
- Допускается стерилизация паром.
- Низкая ползучесть даже при высокой температуре.
- Высокая радиационная стойкость
- Отличная замена поликарбонату, когда требуется повышенная химстойкость и большая термическая устойчивость.

Характеристики полисульфонов

Наименование показателя		PSU	PES	PPSU	PPSU-C
ПТР, г/10 мин. при 350 °C		9,0	30	20-25	9,0
Температура стекло	Температура стеклования, °С		222	218	235
Ударная вязкость	без надреза	н/р	143	н/р	88,0
по Изоду, кДж/м²	с надрезом	6,0	5,2	20,0	6,2
Модуль упругости при	Модуль упругости при изгибе, ГПа		3,0	2,5	2,8
Модуль упругости при	Модуль упругости при растяжении, ГПа		2,5	2,2	2,4
Прочность при разрыве, МПа		60,0	75,0	75,0	73,0
Предел текучести при растяжении, МПа		75,9	86,0	87,5	90,5
Относительное удлинение, %		13,9	9,4	14,0	9,8

НАПОЛНЕННЫЙ УГЛЕВОЛОКНОМ ПОЛИЭФИРЭФИРКЕТОН (PEEK CF)

Основные особенности:

- Повышенная прочность и жесткость
- Низкий коэффициент трения
- Высокая износостойкость
- Высокая теплопроводность

По требованию заказчика возможно изготовление PEEK, наполненного углеволокнами в широком концентрационном диапазоне.

Возможно изготовление композитов РЕЕК CF с высокой (H) или низкой (L) текучестью при одной и той же концентрации углеволокна.

Характеристики угленаполненных композитов на основе полиэфирэфиркетона

Наименование показателя		PEEK 40CF L	PEEK 40CF H	PEEK 50CF L	PEEK 50CF H	
ПТР, г/10 мин. при 380°C		8,5	57,3	7,8	46,5	
Ударная вязкость	без надреза	40,0	49,5	40,0	34,0	
по Изоду, кДж/м²	с надрезом	9,5	8,6	9,0	7,5	
Модуль упругости при и	Модуль упругости при изгибе, ГПа		22,2	33,2	30,4	
Модуль упругости при растяжении, ГПа		15,5	13,5	14,1	15,0	
Прочность при разрыве, МПа		234,0	226,0	261,6	246,0	
Относительное удлинение, %		2,5	3,5	4,3	4,5	

КОМПОЗИТЫ НА ОСНОВЕ ПОЛИФЕНИЛЕНСУЛЬФОНА (PPSU), ПОЛИЭФИРИМИДА (PEI) И ПОЛИФЕНИЛЕНСУЛЬФИДА (PPS) ДЛЯ ЛИТЬЯ И 3D ПЕЧАТИ

- Основные особенности: Высокие упруго-прочностные свойства
 - Высокая износостойкость

• Применяется для 3D печати

Характеристики композитов полученных литьем под давлением

Наименование показателя	PPSU 15M¹	PPSU 50GF²	PPSU 40CF³	PEI 40GF	PEI 30CF	PPS 50CF
ПТР, г/10 мин. при 350°C	33	33,5	27,4	39,0	10,0	25
Ударная вязкость по Изоду, кДж/м²	н/р	30	25	33	25	38,1
Модуль упругости при изгибе, ГПа	3,3	14,1	23,1	12,6	18,7	30,2
Модуль упругости при растяжении, ГПа	3,1	8,9	12,4	7,5	9,7	10,6
Прочность при разрыве, МПа	89	120	155	147	157	180
Относительное удлинение, %	13	3	3	3	3	3,3

¹минералонаполенный, ²стеклонаполненный, ³угленаполненный

Характеристики композитов полученных 3D печатью

Наименование показателя	PPSU 15M	PPSU 35GF	PPSU 30CF	PEI 40GF	PEI 25CF	PPS 30GF	PPS 25CF
Ударная вязкость по Изоду, кДж/м²	н/р	32	30	22	25	20	20
Модуль упругости при изгибе, ГПа	4,1	7,1	10,8	6,8	13,3	9,8	13,8
Модуль упругости при растяжении, ГПа	3,1	3,7	5,0	4,5	5,4	4,3	5,5
Прочность при разрыве, МПа	70,0	74,0	71,0	63,0	94,3	10,2	78,0
Относительное удлинение, %	5	3	3	3	2	2	2

МОДИФИКАТОР ВЯЗКОСТИ ДЛЯ ВЫСОКОТЕМПЕРАТУРНЫХ ПОЛИМЕРОВ

Описание:

модификатор вязкости для улучшения перерабатываемости суперконструкционных высокотермостойких полимеров и композитов на их основе, главным недостатком которых является сложность их переработки. Модификатор вязкости позволяет улучшить технологичность материала при переработке и сохранить высокие физико-механические свойства.

Назначение:

снижение вязкости расплава высокотермостойких полимеров из класса аморфных термопластов - полиэфиримида, полифениленсульфона и композитов на их основе для литья и 3D печати.

Характеристики угленаполненных композитов с использованием модификатора

Наименование показателя		PPSU 30CF	PPSU 30CF-M	PEI 30CF	PEI 30CF-M
ПТР, г/10 мин. при 350°C		7	23	5	12
Ударная вязкость	без надреза	42	30	40	36,6
по Изоду, кДж/м²	с надрезом	9,1	7,2	5,6	6,3
Модуль упругости при	Модуль упругости при изгибе, ГПа		14,7	12,1	16,5
Модуль упругости при растяжении, ГПа		7,4	8,8	8,2	9,7
Прочность при разрыве, МПа		120,0	123,8	154,0	191,6
Относительное удлинение, %		3,8	2,8	4,2	4,1

МАТЕРИАЛЬНО-ТЕХНИЧЕСКАЯ БАЗА

На базе ЦПМАТ функционирует центр коллективного пользования научным оборудованием «Полимеры и композиты», включающий более 30 единиц современного оборудования, позволяющего проводить полный цикл исследований – от получения материала до испытаний комплекса основных свойств (перечень оборудования доступен на сайте www.cpmat.ru).

ПЕРЕЧЕНЬ УСЛУГ

- Определение температуры стеклования, плавления, кристаллизации полимерных образцов.
- Изучение спектров поглощения в инфракрасной области.
- Определение скорости тепловыделения и потери массы, эффективной теплоты сгорания, периода индукции воспламенения.
- Определение температуры разложения полимеров, влажности материалов,

доли органических и неорганических компонентов.

- Испытание материалов на растяжение, изгиб, сжатие.
- Получение изделий из термопластичных полимерных материалов и гранул.
- Определение показателя текучести расплава термопластов.
- Определение вязкости расплава методом капиллярной реометрии.

- Испытание материалов на возгораемость.
- Измерение коэффициентов пропускания, оптической плотности и концентрации растворов.
- Приготовление суспензий, жидких и пастообразных смесей различного технологического назначения с минеральными и органическими наполнителями.
- Определение ударной вязкости термопластов, композитных слоистых и прочих пластиков по Шарпи и Изоду.
- Определение кислородного индекса.

- Определение газопроницаемости, коэффициента растворимости газа, коэффициента диффузии газа и коэффициента проникания газа.
- 3D печать изделий различной формы и назначения.
- Определение диэлектрических свойств материала.
- Определение электрического сопротивления потенциала нулевого заряда проводящих и не проводящих материалов, а также для измерения малых постоянных токов в низковольтной цепи.

Адрес: 360004, КБР, г. Нальчик, ул. Чернышевского 173,

Кабардино-Балкарский государственный университет, главный корпус.

Тел.: (8662) 72-30-48 e-mail: cpmat@kbsu.ru